
7800 SOFTWARE GUIDE

INTRODUCTION

The 7800 is a product which combines the ATARI 2600 hardware with a
new graphics chip called MARIA. The entire 2600 library of
cartridges will run on the 7800 as they do on the 2600, but new
cartridges designed to access the improved hardware will be able to
take advantage of a large number of improvements.

OVERVIEW OF 7800

Ignoring the 2600 environment, which is identical to the ATARI
2600, the 7800 environment is characterized by the following:'

(2) 6116's - 4K bytes of RAM.

6532 - I/O
TIA - Sounds, some input ports.
Expanded cartridge slot
SALLY (6502) - microprocessor running at 1.79 MHz
MARIA - all video

Additionally, there is a protection circuit which verifies that
each cartridge has the correct encrypted data before enabling 7800
mode. Encryption will be covered in another document, but see
Appendix 1, 7800 Memory Map, for information about reserving space
for encryption.

6ll6's

There are two (2) 6116 2Kx8 RAM chips on the 7800 PC board.
Together they occupy addresses x'1800' to x'27FF'. They are also
partly accessible (shadowed) at addresses x'0040' – x'00ff' and
x'0140' - x'00FF to extend zero page (quick access) RAM and first
page (stack) RAM. Refer to the memory map appendix, for further
information.

6532

This chip is used only for I/O in 7800 mode, whereas in 2600 mode
it also supplies all RAM and timers. Its functions are more limited
because its speed is not fast enough for normal operation. Any
access to this chip (joystick, and switch I/O) will cause the
microprocessor to slow to 1.19 MHz. The port and switches connected
through the 6532 are: joysticks (directional), pause, game select,
game reset, and difficulty switches. The 6532 can be used to
generate output through the joystick ports as well. For address
information on 6532 ports and switches, refer to Appendix 2,
Standard 7800 Equates.

TIA

The TIA is only partly accessible in 7800 mode. While it occupies
addresses x'0000' - x'003F' in 2600 mode, only the section at
x'0000' - x'00lF' is available in 7800 mode. The only significant
(useable) registers of these are the sound related registers and
the input ports (fire buttons, paddle controllers). Any access to
the TIA will cause the processor to slow from 1.79 MHz to 1.19 MHz.

CARTRIDGE SLOT

The cartridge slot is larger for 7800 mode cartridges. The
additional lines are: three (3) address lines (now all 16 address
lines appear on the cartridge connector); the READ/WRITE line, so
that RAM may be added to any cartridge very simply; the phase 2
clock line in order to add another microprocessor on the cartridge
and have it synchronized with the existing Sally chip; an audio
line so that one may mix in audio signals generated on the
cartridge; a composite video line, so that external video signals
may be included; and the HALT line, to enable the cartridge to
distinguish MARIA ROM accesses from SALLY ROM accesses.

SALLY (6502)

This is the microprocessor, which is also used in the ATARI 5200.
The only thing special about the Sally chip is that is has a HALT
line, which allows the functionality described above.

MARIA

This is the custom chip which is the heart of the 7800. It handles
all graphics and video including the VSYNC and VBLANK signals.

OVERVIEW OF MARIA

GRAPHICS

MARIA does not employ the concepts of players, missiles, and
playfield, as do the 2600 and 5200. Instead MARIA uses an approach
to graphics commonly used in coin-operated games. Each raster of
the display may be thought of as a bit map. This map is contained
in an area of the MARIA chip called the Line RAM. Information is
first stored into the Line RAM, then later read from Line RAM and
displayed on the screen.

Consider for a moment just one raster of display. One would compose
this raster's graphics by storing data into Line RAM. This is done
by specifying what data should be put at what horizontal location.
Graphics may be specified in small pieces, and overlapped. The
order in which pieces of a raster are specified determines object

priority with the last object specified on top.

When graphic data is specified to be stored into Line RAM, it will
reference anyone of eight (8) color palettes. Each pixel of data
will take on any one of three (3) colors from the specified
palette, or may be turned off (transparent). Again, the Line RAM
contains only one raster of graphics information. There are
actually two Line RAM buffers. While one is being read (displayed),
the other is being written for display the next raster. This means
that the construction of graphics for a raster may take as long as,
but no longer then, one raster, and that graphics must be stored
into Line RAM on a raster by raster basis.

The only limit to the number and size of objects on one scan line
is the amount of time it takes to load each into Line RAM, as all
loading must occur during one scan line.

DISPLAY

There are a total of 262 rasters per frame (1/60th second). The
"visible" screen (during which MARIA attempts display) starts on
raster 16 and ends on raster 258. The area found visible on all
television sets starts on raster 41 and ends on raster 232,192 scan
lines later. Any display outside this area may not appear on all
televisions. See Appendix 4, Frame Timing, for more details.

Display is accomplished automatically by MARIA and consists of two
tasks: constructing the Line RAM, and displaying the graphics.
These happen simultaneously in MARIA. Construction of Line RAM is
automatically initiated every raster by MARIA, and is directed by a
predefined list of instructions called the Display List. Line RAM
construction occurs through a process called DMA (Direct Memory
Access). This means that the 6502 (SALLY) processing is suspended
while MARIA comes in and interrogates the RAM and ROM for Display
List and graphics information. DMA will occur every "visible" scan
line and lasts no longer than one scan line. Because the Line RAM
being constructed is displayed on the following scan line, MARIA
will read each Display List one line before it is actually
displayed. All Line RAM is cleared on a line by line basis and
BACKGRND color will be displayed if no data is written.

Display List

DMA is mainly concerned with reading the Display List. This is a
list of instructions for where to find graphics data, where to put
it on the screen, and other details for constructing a scan line.
The Display List is made up of many "headers." Most headers are
four (4) bytes long (the exception is discussed later). If the

second byte of a header is zero, it indicates the end of the
Display List, and DMA will stop allowing the 6502 to continue
processing. The format of the header is as follows:

 A7 A6 A5 A4 A3 A2 Al A0

 P2 Pl PO W4 W3 W2 W1 W0

 A15 A14 A13 A12 All A10 A9 A8

 H7 H6 H5 H4 H3 H2 Hl H0

or

Low Address

Palette Width

High Address

Horizontal Position

where:

ADDRESS(A15-AO) - Address of graphics information.
PALETTE(P2-PO) - Refers to color palettes 0-7.

WIDTH(W4-WO) - 2's complement of width. Specifies number of bytes
of graphics data to fetch: values 1-31.

 HORIZONTAL POSITION (H7-HO) - X location on the screen where left
edge of graphics is to be placed.

0-159 => Visible
160-255 => Not visible. Wrap around occurs at 255/0 boundary.

Each header is concerned with one graphics item, which can be any
width. If ten objects should appear on a scan line, the Display
List for that scan line would be ten (10) headers long, followed by
two (2) bytes, the first of which is ignored, and the second of
which should be zero to end DMA.

A Display List may cross only one page boundary, so it can be no

more than 512 bytes long. Additionally, Display Lists must be in
RAM, due to the required access time.

Display List List

MARIA locates the Display Lists by reading a Display List List
(referred to as DLL from now on). This list is a series of 3 byte
entries. Each entry points to a Display List. Included in each
entry is a value called OFFSET, which indicates how many rasters
should use the specified Display List. OFFSET is decremented at the
end of each raster until it becomes negative, which indicates that
the next DLL entry should now be read and used. Each time graphics
data is to be fetched OFFSET is added to the specified High address
byte, to determine the actual address where the data should be
found. This allows one display list to specify many rasters of
graphics. Without OFFSET the only approach to graphics is to have a
Display List for each
raster, and a DLL for each Display List. Not only would this use
a lot of RAM, but it would also take quite a bit of processing time
to manipulate these Display Lists when objects move. Because OFFSET
is added to HIGH address byte, each raster of graphics for an
object must be separated by x'lOO' bytes, or one page.

The group of rasters specified by one DLL entry is called a "zone."
Again, the number of rasters in a zone equals OFFSET+l. Larger
zones mean less RAM is needed for DLLs, Display Lists, and
Character Maps (see DMA MODES below). But upon consideration of how
to use zones, you will realize that to achieve smooth vertical
motion each stamp must be padded at top and bottom with zeros. For
example, if the top raster of an object is to appear on the last
line of a 16 high zone, it must have 15 lines of zeros above it. If
that object is 8 pixels (2 bytes) wide, and its top line of data is
located at x'CF04' and x'CF04', then you will need two bytes of
zeros at x'DO04', x'D104', x'D304',..., and x'DE04' (remember that
OFFSET decrements). As this can add up to many pages of zeros, you
can specify that MARIA should interpret certain data as zeros, even
if it isn't. This is called "Holey DMA" because DMA will see
"holes" in the data that aren't really there. This can be enabled
and disabled on a zone by zone basis via a DLL entry. Holey DMA has
been aimed at 8 or 16 raster zones, but will have the same effect
for other zone sizes. MARIA can be told to interpret odd 4K blocks
as zeros, for 16 high zones, or odd 2K blocks as zeros for 8 high
zones. This will only work for addresses above x '8000'. This means
that these blocks can hold meaningful code, or tables, or graphics
data used in a zone where Holey DMA is not on.

One of the bits of a DLL entry tells MARIA to generate a Display
List Interrupt (DLI) for that zone. The interrupt will actually
occur following DMA on the last line of the PREVIOUS zone. This

interrupt is non-maskable, and causes the processor to go to the
address specified by the NMI vector at x 'FFFA' and x 'FFFB'.
This interrupt in no way affects DMA, so processing will still be
suspended at the beginning of the next raster.

The format of a 3 byte DLL entry is as follows:

DLI H16 H8 0 Offset

High DL Address

Low DL Address

where:

DLI Display List Interrupt flag.

0 = > No DLI.
1 => Interrupt after DMA on last line of previous zone.

H16 16 high zone Holey DMA enable.

0 => Not enabled.
1 => Enabled. DMA interprets odd 4K blocks as zeros. (A12
high => data =0)

H8 8 high zone Holey DMA enable
0 => Not enabled.
1 => Enabled. DMA interprets odd 2K blocks as zeros. (All
high => data =0)

OFFSET OFFSET starting value. 4 bits only.

DL ADDRESS Address of Display List for this zone.

A Display List List may cross only one page boundary, so it can be
no more than 512 bytes long. Additionally, Display List Lists must
be in RAM, due to the required access time.

MODES

DMA Modes

There are two modes for specifying graphics data. The first, called
Direct mode, is what has just been explained, where a Header (in
the Display List) points directly to graphics data. The other mode

is called Indirect or Character mode, and is somewhat different in
that the Header points to a Character Map, which in turn points to
graphics data. Indirect mode is selected by every header that
requires it via an extended (5 byte long) header. The format of
this header is as follows:

A7 A6 A5 A4 A3 A2 Al A0

WM 1 IND 0 0 0 0 0

Al5 A14 Al3 Al2 All Al0 A9 A8

P2 PI PO W4 W3 W2 W1 W0

H7 H6 H5 H4 H3 H2 H1 H0

Or

Low Address

Mode Byte

High Address

Palette Width

Horizontal Position

where:

ADDRESS (A15-A0) - Address of graphics information.

MODE BYTE: WM - Write mode bit.

0 => 160x2 or 320xl
1 => 160x4 or 320x2

IND 0 => Direct mode.
1 => Indirect mode

PALETTE (P2-PO) - Refers to color palettes 0-7.

WIDTH (W4-WO) - 2's complement of width. Specifies number of bytes
of
 graphics data to fetch: values 1-32.

HORIZONTAL POSITION (H7-HO) - X location on the screen where left
edge of

 graphics is to be placed.
 0-159 => Visible. .

 160-255 => Not visible.
 Wrap around occurs at 255/0 boundary.

There is an added bonus to five byte headers. Because the end of
DMA is indicated by the presence of a zero in the second byte of a
header, and in a five byte header the width byte is not the second
but the fourth, a width of zero is valid in an extended header, and
will be interpreted as a value of 32.

Indirect mode, when selected, only lasts as long as the
corresponding header is being processed. MARIA will return to
Direct mode before the next header is read.

In indirect mode, the width indicates how many Character Map
references to make, where each Character Map entry points to one
byte of graphics data (the Character Map can point to two (2)
consecutive bytes of graphics; see CTRL under REGISTERS). The idea
behind Character (Indirect) mode is to specify a great amount of
graphics with only one Header. The graphics start at the horizontal
location specified by the Header and each character (graphics
referred to by one Character Map entry) is inserted to the right of
the previous one. One Character may be changed without affecting
the others by altering the Character Map entry corresponding to
that character. This is ideally suited for backgrounds such as the
maze and dots in Ms. Pacman.

The Character Map is composed by W entries, where W is the
specified width and each entry is one byte long. Each entry is a
Low address byte of a character, and the High address byte is
specified by the Character Base register (see CHARBASE under
REGISTERS). This means that each character on a scan line must have
the same high address byte (sit on the same 256 byte page).

Display Modes

The normal display mode is 160 mode, where the screen is divided
into 160 pixels horizontally. Typically graphics are done in l60x2
mode, where there are two color bits specified for each pixel, and
these two color bits refer to one of the eight palettes.

Alternately, one may specify graphics in l60x4 mode,

where there are four color bits per pixel. In this mode, each byte
of graphics data would specify only two (2) pixels of graphics. If
higher resolution is preferred, 320xl mode is the common choice,
where the screen is divided into 320 pixels horizontally and each
pixel has one color bit. A. more colorful 320x2 mode is also
available with two color bits per pixel.

Selection of a particular mode is accomplished through two separate
operations: specification of WRITE MODE. and specification of READ
MODE. WRITE MODE is specified via the WM bit of an extended (5
byte) header, as described above. READ MODE is specified via the
CTRL register. Both of _hese specifications will remain in effect
until respecified. WRITE MODE is not initialized by MARIA on power-
up, and must be initialized by the cartridge before any display
occurs. The reason for specifying WRITE MODE via an extended
header, is to allow the programmer to change for l60x2 to l60x4 (or
from 320x2 to 320xl, or vice-versa) during the DMA for a particular
scan line. For more information about modes see CTRL under
REGISTERS.

REGISTERS

The location of the MARIA registers which control the display is
shown in Appendix 1, 7800 Memory Map.

Palettes

The palette registers are used to specify colors for the graphics.
There are eight palettes, and each contains three colors. The
colors themselves are specified in the form:

C3 C2 C1 C0 L3 L2 L1 L0

where C3-CO is the color, and L3-LO is the luminosity, for a total
of 256 different hues.

The palette registers are labeled POC1, POC2, POC3, P1Cl, P1C2,
P1C3, P2Cl, P2C2, P2C3,... P7Cl, P7C2, P7C3. A pixel whose two
color bits are "10" and which refers to palette three (3) would be
colored based on the value in P3C2. Color zero of any palette is
transparent. Additionally, there is a register called BACKGRND used
to specify background color. All the palettes and BACKGRND are
READ/WRITE, but they must be read using "Absolute, index"
addressing of the 6502.

OFFSET

The OFFSET register is a 4 bit value which gets added,
automatically, to the high address byte on any graphics data fetch,

whether Direct or Indirect. This register is internal to MARIA, and
is set by each Display List List entry.

In a previous incarnation, the OFFSET register occupied a memory
address. This address is now vacant, but you shou1d STORE ZERO
THERE ON POWER-UP TO ALLOW FOR FUTURE EXPANSION.

CHARBASE

The CHARBASE register serves to specify the high address for any
graphics data fetch in Character (Indirect) mode. As you recall,
the Character Map (pointed to by the Header in the Display List)
specifies the low address bytes of graphics data. Each of these low
address bytes is concatenated with the sum of CHARBASE +" OFFSET,
to give the full 16 bit addresses of where the graphics data should
be found. The CHARBASE register is WRITE ONLY.

DPPH

DPPH stands for Display List Pointer Pointer High, and this is the
register which contains the high address byte of the Display List
List. This register is WRITE ONLY. The Display List List may cross
one page boundary, in which case DPPH is internally incremented,
then reset at the end of the visible screen, so it is valid for the
next frame. This register (and DPPL) should be written to before
DMA is turned on. Once DMA is on, DPPH and DPPL may be written at
any time, as they are only read at the beginning of the screen.

DPPL

This register is used to specify the low address byte of the
Display List List. It, too, is WRITE ONLY.

MSTAT

MSTAT is a READ ONLY register which communicates the status of
Vertical Blank via bit 7 (MSB). When this bit is 1 VBLANK is on.
When VBLANK turns off, DMA will begin according to your Display
List. This transition occurs at raster 16 of the frame.

CTRL

The CTRL register is a WRITE ONLY register used to control many of
the modes of MARIA. Through this register one can control whether
the background color extends off the edge of the TV (horizontally),
beyond the area where graphics may be positioned; or whether the
background color stops at the horizontal limits of graphics and
this border area appears black. This border area is an area which
appears undependably on various television sets.

CTRL also specifies whether characters (in Character mode) are one
or two bytes wide. That is, in Character (Indirect) mode, whether
one, or two bytes of graphics data should be fetched at the address
pointed to by the Character Map entry and CHARBASE.

The advantage of two byte characters is that the same number of
pixels can be specified with half as many Character Map entries.
The disadvantage is that when changing one character, twice as much
of the screen is affected.

This register also controls whether the color burst signal is
generated or not. If color burst is turned off, the graphics
are, of course, displayed in black and white, but with a greater
clarity than if the gray scale colors (x'00' - x'0F') were used.

Another bit of CTRL enables "Kangaroo" mode which eliminates
transparency, so that any pixel of color "0" will be background
color, rather than transparent. For the derivation of this name see
the ATARI coin-op game Kangaroo.

DMA may be turned on or off via the CTRL register. At power-up DMA
is off, and must be turned on by the cartridge. This should not be
done until after DPPL and DPPH have been stored (so that DMA
doesn't try to read a DLL from an undefined location). DMA should
be turned on DURING VBLANK, and never during the screen (rasters
16-258). If DMA is off the screen will continue to display the
background color.

Finally, CTRL is where the READ MODE portion of the graphics mode
is selected (remember the WRITE MODE portion is selected via an
extended header). WRITE mode controls the way data is written into
Line RAM, and READ mode controls the way Line RAM is interpreted
and translated to the screen. Because READ MObE affects the scan
line being displayed, changes to READ MODE should happen at the
beginning of the scan line to be affected.

The WRITE MODE selects between a.) l60x2 or 320x1 and b.) 160x4 or
320x2. The Read mode selects between a.) 320A or 320C, b.) 320B or
320D, and c.) 160A(x2) or 160B(x4). The following table should be
more informative:

MODE WM RM1 RMO
160A 0 0 0
160B 1 0 0
320A 0 1 1
320B 1 1 0
320C 1 1 1
320D 0 1 0

320A mode is a true 320x1 mode. Pixels that are "on" refer to color
two (2) of the specified palette. Pixels that are off are
transparent (or background color if "Kangaroo" mode is on). In 320B
mode, which is a 320x2 display mode, only the most significant
palette bit is read. This means that either palette zero (0) of
palette four (4) is used. If "Kangaroo" mode is off, transparency
will work differently for modes. Consider a pair of 320-size pixels
which make up one 160-size pixel. If either pixel of the pair is
off, it will not be transparent, but will

take on background color instead. If both pixels are off, they will
be transparent. With "Kangaroo" mode on, things work as one would
expect them to work in this mode. Another factor concerning 320
modes is that the horizontal positioning still happens like 160
mode. This means that in 320 modes, objects can only be positioned
in 2 pixel increments.

320C and 320D are display modes somewhat similar to 320B and 320A,
respectively. They are what you would get if you changed WRITE mode
without changing READ mode (such as changing modes during a scan
line). If you were in 320A mode, and wanted to include a character
with more colors on the line, changing modes would give you 320C
mode. Likewise, changing from 320B on the fly would give you 320D
mode. The way data is interpreted for 320C and 320D will be
explained later on.

In l60x4 mode, again only the most significant palette bit is read
(note that l60x4 and 320B share the same WRITE mode sense). Because
there are more color bits than each palette can handle, the
palettes are combined in l60x4 mode so you may choose between the
combinatins of 0-3 and 4-7. The net result of l60x4 mode is twelve
(12) colors, where color one (1) is POCI or P4Cl, two (2) is POC2
or P4C2, five (5) is PlCl or P5Cl, six (6) is PlC2 or P5C2, etc.
and colors 0,4,8, and 12 are transparent.

The CTRL register is arranged as follows:

CK DM1 DM0 CW BC KM RM1 RM0

Where:

CK Color Kill.

0 => Normal color.
1 => No color burst.

DMl,DMO DMA control.
0 => Test A (DO NOT USE)
1 => Test B (DO NOT USE)
2 => Normal DMA.
3 => No DMA.

CW Character Width.
0 => Two (2) byte characters.
1 => Single byte characters.

BC Border Control.
0 => Background color border.
1 => Black border.

KM "Kangaroo" Mode Switch.

0 => Transparency.
1 => "Kangaroo" mode: no transparency. Read Mode.

RM1, RMO 0 => 160x2, or 160x4 1 = > Not used.
2 => 3208 or 320D.
3 => 320A or 320C.

{WARNING: TEST A (DM = 0) and TEST B (DM = 1) should NOT be used!
These are for testing the chip at manufacturing time, and may cause
irrecoverable problems, as well as possible DAMAGE TO THE BASE
UNIT!)

The coding of graphics data is straightforward for most of these
modes. In 160x2 mode, each pair of bits is arranged so that the
leftmost pixel's color is specified by the most significant pair of
bits, and the rightmost pixel by the least significant pair of
bits.

Bits 76 54 32 10

Pixels

Graphics byte

160x2

In 160x4 mode, the data is read as follows: the left pixel's color
is specified by bits 3,2,7,6 (where 3 is MSB, 6 is LSB). The right
pixel is specified by bits 1,0,5,4 (where 1 is MSB, 4 is LSB).

Bits 3276 1054

Pixels

Graphics byte

 l60x4

320A mode is a direct mapping, like l60x2, except that each bit
specifies the color of one pixel.

Bits 7 6 5 4 3 2 1 0

Pixels

Graphics byte

 320A(x1)

320B mode works as follows:

Bits 73 62 51 40

Pixels

Graphics byte

320B(x2)

320C mode allows more colors than 320A, but cannot really be called
320x2. In this mode, some of the graphics data goes to specifying
palettes, which is somewhat non-standard. If a pixel is on, it is
color two (2), and if it is off, it is transparent, or background
color (same as 320A and 320B). The palette is determined by
combining the most significant palette. The palette for the
leftmost pixel is specified by P2,D3, and D2 (where P means a
palette bit, and D means graphics data bit), and the graphics are
specified by D7. The next pixel right uses the same palette, and
uses D6 for data. The next pixel right uses a palette specified by
P2, Dl, and DO, and uses D5 for data. The rightmost pixel uses the
same palette, but D4 for data. The mapping for 320C mode is as
follows:

Palette bits <P2><D3><D2> <P2><D1><DO>

Color bits D7 D6 D5 D4

Pixels

Graphics byte 320C

320D mode is a little confusing, too. Every pixel refers to the
same palette but palette bits affect the color of the pixels.
The only palette bit used for palette definition is the most
significant bit (same as 320B), so only palettes zero (0) and four
(4) will be referenced. For color selection there is really more
than one bit per pixel. The graphics data bits are used as follows:
each is the most significant bit for a two bit pair.
But the least significant bit of this pair is either PO or Pl
(where P again means palette bit). If the specified palette is 0 or
4 (where Pl and PO are zero), this is a normal 320x1 mode, like
320A. But if the specified palette is 5, palette 4 will be used,
and certain pixels will be either color 1 or 3, and others will be
0 or 2. A picture's worth a thousand words, so:

320D
palette bits P2 P2 P2 P2 P2 P2 P2 P2

color bits DP DP DP DP DP DP DP DP

71 60 51 40 31 20 11 00

Pixels

Graphics byte

APPENDIX 1: 7800 MEMORY MAP

The memory map of the 7800, graphically illustrated on the next
page, is in many ways similar to that of the 2600, with the
addition not only of MARIA, but also of 4K of RAM. This RAM is
shadowed (responds to other addresses) in zero, first, second, and
third pages, the first two of these being significant. You will
notice the absence of the 128 bytes of 6532 RAM that make up zero
page RAM in the 2600. This is because of speed discrepancy with the
6532. It's RAM has moved to an area in page four (4) and may not
exist in future versions of the MARIA chip, so it should not be
used.

 FROM TO

1. TIA 0000 00XX 0000 0000 0000 00XX 0001 1111

2. MARIA 0000 00XX 0010 0000 0000 00XX 0011 1111

3. 6532 PORTS 0000 0010 1000 0000 0000 0010 1111 1111

4. 6532 RAM
(don’t use) 0000 010X 1000 0000 0000 010X 1111 1111

5. RAM 0001 1000 0000 0000 0010 0111 1111 1111

6. RAM
SHADOW 00X0 000A 0100 0000 00X0 000A 1111 1111

7. RAM
SHADOW 001X X000 0000 0000 001X X111 1111 1111

where: X means "Don't Care," and A means the bits may be 1 or 0,
but are not ignored. Entries 5 and 6 indicate that pieces of RAM
from x'1800' - x'27FF' appear in zero, and first pages. The last
entry indicates that the last 2K block (x'2000' - x'27FF') is
repeated at x'2800', x'3000', and x'3800' making this 6K area a
series of 2K shadows.

For encryption purposes, the 128 bytes from x'FF7A' - x'FFF9' must
be left free. Put FFs in this area until encrypted.

0000 TIA Registers 001F

0020 MARIA Registers 003F

0040 RAM (6116 Block Zero) 00FF

0100 Shadow of Page 0 (TIA and MARIA) 013F

0140 RAM (6116 Block One) 01FF

0200 Shadowed 027F

0280 6532Ports 02FF

0300 03FF

0400 Available 047F

0480 6532 RAM – Don’t Use 04FF

0500 Available 17FF

1800 RAM 203F

2040 Block Zero Shadow 20FF

2100 RAM 213F

2140 Block One Shadow 21FF

2200 RAM 27FF

2800 Same as 2000-27FF 3FFF

4000 Available FF79

FF7A Reserved for Encryption FFF9

FFFA FFFF

APPENDIX 2: STANDARD 7800 EQUATES

INPTCTRL EQU X ‘01’ INPUT PORT CONTROL("VBLANK" IN TIA) WO
AUDCO EQU X ‘15’ AUDIO CONTROL CHANNEL 0 WO
AUDCl EQU X ‘16’ AUDIO CONTROL CHANNEL 1 WO
AUDFO EQU X ‘17’ AUDIO FREQUENCY CHANNEL 0 WO
AUDFl EQU X ‘18’ AUDIO FREQUENCY CHANNEL 1 WO
AUDVO EQU X ‘19’ AUDIO VOLUME CHANNEL 0 WO
AUDVl EQU X ‘1A’ AUDIO VOLUME CHANNEL 1 WO
INPTO EQU X ‘08’ PADDLE CONTROL INPUT 0 WO
INPTl EQU X ‘09’ PADDLE CONTROL INPUT 1 WO
INPT2 EQU X ‘0A’ PADDLE CONTROL INPUT 2 WO
INPT3 EQU X ‘0B’ PADDLE CONTROL INPUT 3 WO
INPT4 EQU X ‘0C’ PLAYER 0 FIRE BUTTON INPUT WO
INPT5 EQU X ‘0D’ PLAYER 1 FIRE BUTTON INPUT WO
BACKGRND EQU X ‘20’ BACKGROUND COLOR R/W
POCl EQU X ‘21’ PALETTE 0 - COLOR 1 R/W
POC2 EQU X ‘22’ PALETTE 0 - COLOR 2 R/W
POC3 EQU X ‘23’ PALETTE 0 - COLOR 3 R/W
WSYNC EQU X ‘24’ WAIT FOR SYNC STROBE
PICl EQU X ‘25’ PALETTE 1 – COLOR 1 R/W
PIC2 EQU X ‘26’ PALETTE 1 – COLOR 2 R/W
PIC3 EQU X ‘27’ PALETTE 1 – COLOR 3 R/W
MSTAT EQU X ‘28’ MARIA STATUS RO
P2Cl EQU X ‘29’ PALETTE 2 – COLOR 1 R/W
P2C2 EQU X ‘2A’ PALETTE 2 – COLOR 2 R/W
P2C3 EQU X ‘2B’ PALETTE 2 – COLOR 3 R/W
DPPH EQU X ‘2C’ DISPLAY LIST LIST POINT HIGH WO
P3Cl EQU X ‘2D’ PALETTE 3 – COLOR 1 R/W
P3C2 EQU X ‘2E’ PALETTE 3 – COLOR 2 R/W
P3C3 EQU X ‘2F’ PALETTE 3 – COLOR 3 R/W
DPPL EQU X ‘30’ DISPLAY LIST LIST POINT LOW WO
P4Cl EQU X ‘31’ PALETTE 4 – COLOR 1 R/W
P4C2 EQU X ‘32’ PALETTE 4 – COLOR 2 R/W
P4C3 EQU X ‘33’ PALETTE 4 – COLOR 3 R/W
CHARBASE EQU X ‘34’ CHARACTER BASE ADDRESS WO
P5Cl EQU X ‘35’ PALETTE 5 – COLOR 1 R/W
P5C2 EQU X ‘36’ PALETTE 5 – COLOR 2 R/W
P5C3 EQU X ‘37’ PALETTE 5 – COLOR 3 R/W
OFFSET EQU X ‘38’ FOR FUTURE EXPANSION – STORE ZERO HERE R/W
P6Cl EQU X ‘39’ PALETTE 6 – COLOR 1 R/W
P6C2 EQU X ‘3A’ PALETTE 6 – COLOR 2 R/W
P6C3 EQU X ‘3B’ PALETTE 6 – COLOR 3 R/W
CTRL EQU X ‘3C’ MARIA CONTROL REGISTER WO
P7Cl EQU X ‘3D’ PALETTE 7 – COLOR 1 R/W
P7C2 EQU X ‘3E’ PALETTE 7 – COLOR 2 R/W
P7C3 EQU X ‘3F’ PALETTE 7 – COLOR 3 R/W
SWCHA EQU X ‘280’ PO, P1 JOYSTICK DIRECTION INPUT R/W
SWCHB EQU X ‘282’ CONSOLE SWITCHES RO
CTLSWA EQU X ‘281’ I/O CONTROL FOR SWCHA R/W
CTLSWB EQU X ‘283’ I/O CONTROL FOR SWCHB R/W

APPENDIX 3: DMA TIMING

There is some uncertainty as to the number of cycles DMA will
require, because the internal MARIA chip timing resolution is
7.16 MHz, while the 6502 runs a_ either 1.79 MHz or 1.19MHz. As a
result, it is not known how many extra cycles will be needed in DMA
startup/shutdown to make the 6502 happy. It is even possible for the
6502 to be in the middle of a long (TIA or 6532) access when it is to
be halted, so the uncertainty goes up to about 5 cycles.

All times listed below refer to 7.16 MHz cycles.

DMA startup 5-9 cycles

Header (4 byte) 8 cycles

Header (5 byte) 12 cycles

Graphics Reads:
Direct 3 cycles
Indirect/l byte 6 cycles
Indirect/2 byte 9 cycles

Character Map access 3 cycles

Shutdown Times:
Last line of zone 10-13 cycles

Other lines of zone 4 - 7 cycles

End of VBLANK is made up of a DMA startup plus a Long shutdown.

DMA does not begin until 7 CPU (1.79 MHz) cycles into each scan line.
The significance of this is that there is enough time to change a
color, or change CTRL before DMA begins, and during
HBLANK (before display begins). This figure should, however, be
included in any DMA usage calculations.

Another timing characteristic is that there is one mpu (7.16 MHz)
cycle between DMA shutdown and generation of a DLI.

